Toán lớp 5 phân số

Khái niệm phân số:Mỗi phân số tất cả tử số cùng mẫu mã số. Tử số là số tự nhiên và thoải mái viết bên trên gạch ốp ngang. Mẫu số là số tự nhiên và thoải mái không giống 0 viết bên dưới dấu gạch ốp ngang.

Bạn đang xem: Toán lớp 5 phân số

Ví dụ:Các phân số là: $frac12;frac3197;frac2651;frac103104;frac01354$

Thương của phnghiền phân tách số tự nhiên đến số tự nhiên (không giống 0) có thể viết thành một phân số, tử số là số bị phân chia với chủng loại số là số phân tách.

Ví dụ:$5:17=frac517$ $26:327=frac26327$

BÀI TẬP

Bài 1:Viết các phân số sau:

a)Ba phần năm

b)Mười nhì phần mười ba

c) Mười tám phần nhì mươi lăm

d)Năm mươi sáu phần chín mươi chín

Bài 2:Đọc những phân số sau:

$frac67;frac328;frac1931;frac3344frac70100$ Bài 3:Lấy ví dụ về :

5 phân số to hơn 15 phân số bé nhiều hơn 1

Rút gọn gàng phân số

Hiểu đặc thù cơ phiên bản của phân số:

+Nếu nhân cả tử cùng mẫu mã số của một phân số với cùng một trong những tự nhiên khác 0 thì được một phân số bởi phân số vẫn cho.

+Nếu cả tử số với chủng loại số của một phân số thuộc phân chia hết cho một số trong những tự nhiên và thoải mái không giống 0 thì sau khoản thời gian phân tách ta được một phân số bằng phân số sẽ mang lại.

Để rút ít gọn phân số ta hoàn toàn có thể có tác dụng nlỗi sau:

+Xem xét tử số cùng chủng loại số cùng phân chia hết đến số tự nhiên làm sao to hơn 1.

+Chia tử số với mẫu mã số đến số kia.

+Cđọng có tác dụng như vậy cho tới Lúc nhận ra phân số về tối giản

Thông thường lúc rút gọn phân số là đề nghị được phân số về tối giản. Một phân số quan yếu rút ít gọn được nữa Điện thoại tư vấn là phân số về tối giản

Chụ ý lúc rút ít gọn gàng ta nhờ vào những dấu hiệu phân tách không còn sẽ học, dấu hiệu phân chia hết mang đến 2, 3, 5, 9. Và quan trọng đề xuất ở trong các bảng nhân, bảng chia để rút ít gọn gàng nhanh khô rộng.

Ví dụ:Rút gọn phân số sau: $frac8451$

Phân tích: Dựa vào dấu hiệu chia không còn ta thấy cả tử với mẫu mã phần đa phân tách hết mang lại 3. Nên vẫn rút gọn gàng cả tử cùng mẫu mã mang lại 3.

Giải:

$frac8451=frac84:351:3=frac2817$

BÀI TẬP

Bài 1:Rút gọn các phân số sau thành phân số tối giản:

a)$frac1624$ b) $frac3545$

c) $frac4928$ d) $frac6496$

Bài 2:Viết số phù hợp vào nơi chấm:

a) $frac6496=frac32...=frac...24=frac8...=frac...6=frac2...$

b) $frac43=frac12...=frac...27=frac108...=frac...243=frac972...$

Bài 3:Rút gọn những phân số sau thành phân số buổi tối giản:

a) $frac35352525$ b) $frac54547272$

c) $frac787878666666$ d) $frac7575125125$

e) $frac101101123123$

QUY ĐỒNG MẪU SỐ CÁC PHÂN SỐ

Cần nhớ:

a)khi quy đồng mẫu số hai phân số hoàn toàn có thể làm như sau:

_Lấy tử số với mẫu số của phân số trước tiên nhân với mẫu số của phân số trang bị nhì.

_Lấy tử số cùng mẫu số của phân số thiết bị nhị nhân với chủng loại số của phân số thứ nhất.

b)Nếu chủng loại số của phân số đồ vật hai nhưng mà phân tách hết mang đến mẫu số của phân số trước tiên thì ta hoàn toàn có thể quy đồng chủng loại số nhì phân số nlỗi sau:

_Lấy chủng loại số phổ biến là mẫu số của phân số máy nhị.

_Tìm vượt số prúc bằng cách mang chủng loại số vật dụng hai mang lại chủng loại số thứ nhất.

_Nhân cả tử số với chủng loại số của phân số thứ nhất cùng với quá số prúc tương xứng.

_Giữ ngulặng phân số sản phẩm hai

Crúc ý: Ta thường đem mẫu số chung là số tự nhiên bé dại độc nhất vô nhị không giống 0 với thuộc chia hết cho toàn bộ những chủng loại.

Ví dụ:Quy đồng chủng loại số nhì phân số:

a)$frac23$ cùng $frac45$

Mẫu số chung: 3 x 5 = 15

Quy đồng chủng loại số hai phân số ta có:

$frac23=frac2 imes 53 imes 5=frac1015$ ; $frac45=frac4 imes 55 imes 5=frac2025$

b)$frac37$ và $frac421$

Phân tích: ta thấy 21 : 7 = 3 đề xuất mẫu số thông thường của hai phân số là 21

Giải:

Mẫu số chung: 21

Quy đồng mẫu mã số nhị phân số ta có:

$frac37=frac3 imes 37 imes 3=frac921$ với không thay đổi phân số $frac421$

BÀI TẬP

Bài 1:Quy đồng mẫu số các phân số:

a)$frac35$ với $frac16$ b)$frac47$ với $frac12$

c) $frac811$với $frac94$ d) $frac29$ cùng $frac713$

Bài 2:Quy đồng mẫu số các phân số:

a)$frac34$ với $frac58$ b)$frac13$ và $frac19$

c) $frac45$với $frac1235$ d) $frac910$ với $frac2830$

Bài 3:Viết những phân số sau thành những phân số tất cả chủng loại số là 10:

$frac1836;frac1435;frac2745;frac4050$

SO SÁNH PHÂN SỐ

Kiến thức đề xuất nhớ

a)So sánh nhì phân số cùng mẫu: Chỉ yêu cầu đối chiếu nhì tử sổ

- Phân số như thế nào tất cả tử số nhỏ hơn thì phân số đó bé thêm hơn.

Xem thêm: Malphite Guide Mùa 9 2019: Mid, Top, Cách Chơi Malphite Mùa 11

- Phân số nào gồm tử số phệ hơn nữa thì phân số kia to hơn.

- Nếu tử số bằng nhau thì nhị phân số cân nhau.

b)So sánh nhì phân số khác mẫu mã số

Muốn nắn so sánh hai phân số khác mẫu mã số, ta có thể quy đồng chủng loại số nhị phân số đó , rồi so sánh tử số của hai phân số bắt đầu.

c) Hai phân số tất cả thuộc tử số ( khác 0): Chỉ nên so sánh nhị chủng loại số

- Phân số như thế nào tất cả chủng loại số béo hơn nữa thì phân số kia bé thêm hơn.

- Phân số làm sao bao gồm mẫu mã số bé hơn thì phân số kia to hơn.

- Nếu mẫu mã số bằng nhau thì nhì phân số bằng nhau.

Chú ý: Phía trên là phía dẫn các năng lực so sánh phân số cở bạn dạng của tè học, còn một số trong những bí quyết đối chiếu nâng cao sẽ tiến hành viết cụ thể trong bài viết sau.

BÀI TẬP

Bài 1:Trong các phân số $frac23;frac46;frac53;frac1824;frac2515;frac5030;frac5070;frac7545;frac12575$

a)Các phân số bằng $frac23$

b)Các phân số bởi $frac53$

Bài 2:Hãy search số tự nhiên và thoải mái x, biết: $frac56=fracx18$

Bài 3:Tìm b biết:$fracb-318=frac45$

Bài 4:Điền lốt ( >;Bài 5:So sánh các cặp phân số sau:

a)$frac425;frac75$ b)$frac56;frac1130$

c)$frac158;frac73$ d)$frac310;frac415$

Bài 6:So sánh hai phân số

a)$frac23$ cùng $frac34$ b)$frac314$ và$frac213$

c)$frac49$ và$frac310$ d) $frac1225$ và$frac2039$

Bài 7:Tìm một hoặc hai phân số trung tâm nhị phân số sau:

a)$frac47$ với $frac67$ $frac45$ và$frac15$

b) $frac57$ với $frac59$ $frac15$ với $frac12$

Bài 8:Tìm những phân số vừa to hơn $frac35$ vừa nhỏ thêm hơn $frac45$ với đều phải có mẫu số là 12

PHÉPhường. CỘNG PHÂN SỐ

Kiến thức nên nhớ:

Cùng mẫu số: Muốn nắn cộng nhị phân số cùng mẫu mã số, ta cộng nhị tử số với nhau cùng không thay đổi mẫu mã số

Ví dụ: $frac27+frac37=frac2+35=frac57$

Khác mẫu số: Muốn cộng hai phân số không giống chủng loại số, ta quy đồng mẫu mã số nhì phân số , rồi cộng hai phân số đó.

Ví dụ: $frac12+frac15=frac510+frac210=frac710$

Khi triển khai phép cùng hai phân số, trường hợp phân số chiếm được không buổi tối giản thì ta rút gọn gàng thành phân số về tối giản

BÀI TẬP

Bài 1:Tính:

a)$frac23+frac53$ b)$frac811+frac1211$

c) $frac18+frac38+frac58$ d) $frac613+frac913+frac1213$

Bài 2:Tính:

a)$frac45+frac34$ b)$frac74+frac76$

c) $frac98+frac516$ d) $frac3945+frac1315$

Bài 3:Tính bằng cách thuận tiện:

a)$frac17+frac27+frac37+frac47+frac57+frac67$

b) $frac23+frac46+frac69+frac812+frac1015+frac1218$

Bài 4:Trong một ngày , team I sửa được $frac27$km đường, đội II sửa được $frac37$ km mặt đường, nhóm III sửa được hơn nhóm II $frac17$ km đường. Hỏi trong một ngày, cả tía nhóm đó sửa được bao nhiêu ki-lô-mét đường ?

Bài 5:Mẹ download về một cnhị dầu ăn. Tuần lễ đầu đã cần sử dụng $frac13$ldầu, tuần lễ sau sẽ cần sử dụng $frac14$ldầu thì trong cnhì còn $frac16$ldầu. Hỏi lúc đầu trong cnhị kia gồm mấy lít dầu ăn ?

PHÉPhường TRỪ PHÂN SỐ

Kiến thức buộc phải nhớ:

Trừ nhị phân số cùng mẫu mã số: Muốn trừ nhị phân số cùng mẫu số, ta trừ tử số của phân số thứ nhất mang lại tử số của phân số lắp thêm nhì và không thay đổi mẫu số.

Ví dụ: $frac57-frac27=frac5-27=frac37$

Trừ hai phân số khác mẫu mã số: Muốn nắn trừ nhị phân số khác mẫu số, ta quy đòng mẫu số hai phân số, rồi trừ nhị phân số đó.

Ví dụ: $frac23-frac12=frac46-frac36=frac16$

khi thực hiện phép trừ hai phân số, trường hợp phân số nhận được chưa tối giản thì ta rút ít gọn gàng thành phân số tối giản

Bài 1:Tính:

a)$frac79-frac59$ b)$frac1712-frac512$

c) $frac97-frac65$ d) $frac2118-frac109$

Bài 2:Rút gọn rồi tính:

a)$frac7842-frac47$ b) $frac100110-frac5688$

c) $frac7535-frac117+frac2149$ d) $frac9972-frac1540-frac12121616$

Bài 3:Tìm x:

a)x + $frac47$ = $frac74-frac14$ b)$frac92$ + ( x - $frac34$ )= $frac254$

c)$frac57+frac45$ - x = $frac97$ d) 4 + x + $frac34$ = $frac172$

Bài 4:Hai các bạn Hòa với Bình chạy thi trên và một đoạn đường. Hòa chạy 1 phút ít được $frac45$ phần đường, Bình chạy 1 phút ít được $frac34$ phần đường. Hỏi trong một phút ít các bạn như thế nào chạy nhanh hao rộng và rộng bao nhiêu phần phần đường ?

Bài 5:Một hình chữ nhật tất cả chu vi là $frac354$ m, chiều lâu năm là $frac113$ m. Hỏi chiều rộng lớn kém chiều dài bao nhiêu mét ?

PHÉPhường NHÂN PHÂN SỐ

Kiến thức yêu cầu nhớ

1,Cách triển khai phép nhân

-Muốn nhân hai phân số, ta mang tử số nhân cùng với tử số, mẫu số nhân với mẫu số.

$fracab imes fraccd=fraca imes cb imes d$

-Trường hợp tất cả vượt số là số tự nhiên. cũng có thể viết gọn như sau:

VD1:$2 imes frac35=frac2 imes 35$

VD2: $frac35 imes 2=frac3 imes 25$

*Chú ý: + Trước lúc tính, rất có thể rút ít gọn phân số ( nếu như cần)

+ Sau lúc tính, nên rút gọn phân số để được phân số tối giản.

Bài tập

Bài 1:Tính:

a) $frac79 imes frac67$ b)$frac516 imes frac2411$

c) $frac822 imes 33$ d) $9 imes frac57$

Bài 2:Tính bằng cách dễ ợt nhất:

a)$frac1 imes 2 imes 3 imes 42 imes 3 imes 4 imes 5$ b)$frac23 imes frac34 imes frac45$

Bài 3:Tính bằng cách dễ dàng nhất:

a)$frac23 imes frac45+frac13 imes frac45$ b) $frac1121 imes frac74+frac54 imes frac1121$

c) $frac2314 imes frac613-frac914 imes frac613$ d) $frac12 imes frac67+frac14 imes frac67+frac18 imes frac67$

Bài 4:Một hình chữ nhật tất cả chiều rộng $frac67$ m, chiều dài ra hơn chiều rộng $frac12$ m. Tính:

a)Chu vi hình chữ nhật kia.

b)Diện tích của hình chữ nhật kia ?

Bài 5:Một siêu thị bán tốt 75 chai dầu ăn uống, mỗi chai tất cả $frac25$ldầu. Biết rằng từng lkhông nhiều dầu ăn uống cân nặng $frac910$ kilogam. Hỏi siêu thị vẫn bán được từng nào ki-lô-gam dầu nạp năng lượng ?

PHÉPhường CHIA PHÂN SỐ

Kiến thức phải nhớ

1,Cách triển khai phnghiền chia

-Muốn phân chia hai phân số, ta rước phân số trước tiên nhân cùng với phân số thiết bị nhị hòn đảo ngược.

$fracab:fraccd=fracab imes fracdc$

Phân số$fracdc$gọi là phân số đảo ngược của phân số $fraccd$

-Trường thích hợp phxay phân chia bao gồm một vài thoải mái và tự nhiên. Có thể viết gọn nlỗi sau:

VD1:$3:frac45=frac3 imes 54$

VD2: $frac45:3=frac45 imes 3$

*Chụ ý: + Trước lúc tính, có thể rút ít gọn gàng phân số ( nếu như cần)

+ Sau Khi tính, buộc phải rút gọn phân số để được phân số buổi tối giản.

BÀI TẬP

Bài 1:Tính:

a)$frac49:frac53$ b)$frac76:frac43$

c) $frac98:frac43$ d) $frac17:frac528$

Bài2:Tìm x:

a)$frac34:frac6x:frac87=frac38:frac45:frac67$ b)$frac25:fracx3:frac74=frac24315$

Bài 3:Hộp kẹo khối lượng $frac35$kilogam. Hộp bánh trọng lượng $frac45$kilogam. Hỏi:

a)Hộp kẹo có cân nặng bằng bao nhiêu phần hộp bánh ?

b)Hộp bánh tất cả cân nặng bởi bao nhiêu phần hộp kẹo ?

Bài 4:Một hình chữ nhật tất cả diện tích $frac815$m2, chiều rộng lớn $frac23$m ?

a)Tính chiều lâu năm hình chữ nhật ?

b)Chiều rộng lớn bởi mấy phần chiều dài ?

Bài 5:Một bạn bán tốt $frac56$ tạ gạo, trong số đó số gạo nếp thấp hơn số gạo tẻ là $frac13$ tạ. Hỏi fan kia bán tốt từng nào ki-lô-gam gạo nếp ?